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Introduction

Light microscopy is a cost-effective, non- «  We previously reported on LIVECell, an open-
invasive, accessible modality for high-throughput source, high-quality, manually annotated and
live-cell imaging. expert-validated dataset, comprising over 1.6
million annotated cells of 8 highly diverse cell
types from initial seeding to full confluence,
acquired on the Incucyte®.

Accurate segmentation of individual cells
enables exploration of complex biological
questions, particularly related to morphological
change, but require sophisticated algorithms - With minimal additional data, we fine-tune one
such as convolutional neural networks (CNNs). of our publicly available LIVECell-trained models
to enable quantitative analysis of complex
morphological change associated with two
applications, cell viability and differentiation.

Many deep learning studies have limited
amounts of quality training data.

Incucyte® Live-cell imaging and analysis systems

Application-specific CNN model fine-tuning

Segmentation data provides biological insight

Improving the cell segmentation accuracy for specific applications requires minimal additional
data to fine-tune LIVECell-trained CNN models

Example 1: Treatment-induced cell death in SK-OV-3 cells * 84 HD phaseimages of SK-OV-3 cells

Use IncuCyte VesselView to
review images of all locations in
the vessel at once and quickly
assess experimental results, plus
zoom in on images of interest,
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Generate presentation-ready
timelapse graphs.

Advanced Data Analytics

Incucyte® Advanced Label-free
Classification Module enables
quantification based on cell morphology;
convolutional neural networks (CNNs) can
be used for improved cell segmentation.

High-throughput Image Acquisition Integrated Software

|Ideal for Deep Learning Applications Integrated software enables
The Incucyte® generates thousands of high- individual cells to be
quality HD phase images from a single experiment. segmented, and analysis of
Fluorescence imaging capabilities also facilitate single metrics (area,
data generation for validation purposes. fluorescence within the cell).

LIVECell enables morphological analysis of cells
with minimal additional annotated data
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Using multivariate data analysis (MVDA) with common cell
morphology metrics (e.g., size, intensity, texture and shape),
we can measure morphological change in response to a
treatment condition.

. LIVECell', an open-source, manually-annotated dataset, is
used to generate a robust instance segmentation model
trained to detect general cell features based on the
CenterMask architecture?.

* Asmall supplementary dataset is used to fine-tune
LIVECell-trained models to learn cell features unique to a
target application (e.g., differentiation, cell death).
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* Thefinal model is deployed to segment cells across a
complete experiment.
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Example 2: THP-1 differentiation into macrophages
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Morphological information on cells can be derived from the cell segmentations

Al model + 25% annotations = circles
KAI model + 100% annotations = triangles

* Cellmorphology is
typically described
qualitatively.

Al model + 100% annotations Al model + 25% annotations

P CTLE

* ltcanalterin
response to
biological events
including cell death
or differentiation.

* Segmentation
yields morphology
data e.g. area,
roundness, texture.
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* Images show SK-OV-3 cells qualitatively similar sesgmentation performance using the model with 100% (left, +100%) or 25%

additional annotated images (right, +25%). 25 metrics describing aspects of the morphology of every cell was extracted.

*  Principal component analysis (PCA) of morphology metrics shows that live cells (grey) have a wide distribution and cluster
separately from dead cells (teal).

*  Objects segmented with the +25% model (circles) also lie close to the objects segmented with the +100% model (triangles)
indicating that the information extracted from both models is comparable.

Cell viability can be quantified from cell morphology data using non-perturbing live cell imaging
Al model + 100% annotations, Oh Al model + 100% annotations, 72h
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*  SK-OV-3cells were treated with the staurosporine (20
NM -1uM) to induce cell death. Cells were placed in an
Incucyte® and Phase HD images were acquired every
2h for 3 days (images shown at Oh and 72h treatment).

* Cells were segmented and the morphological data
extracted. Using a custom version of the Incucyte®
Advanced Label-free Classification Module, a classifier
was trained to identify cells as live or dead.

* Thisclassifier was applied to all images and the % dead
cells perimage was quantified (timecourse, left) to
demonstrate time- and concentration-dependent
increases in cell death.
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Morphological data enables label-free quantification of monocyte differentiation
Differentiated cells, 48h
% Y )

* THP-1Tmonocyte cells were
treated to induce
differentiation.

+ Differentiation causes the
cells to alter morphology
over time from small
rounded objects (left hand
image, Oh) assuming a
larger, elongated and
adherent phenotype typical
of macrophages (right hand

Label-free quantification of macrophages:

Comparison to standard fluorescence method:
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* Aclassifier was trained to identify monocytes vs macrophages. Timecourse (left) shows that in the presence of PMA the %
cells which have differentiated into macrophages increases over the 48h period; in the absence of PMA cells remain
undifferentiated.

* Thelabel-free classification provides comparable results to standard immunocytochemistry using CD11b as a marker for
identification of macrophages (bar graph, right).

* Thesedata show that changing cell morphology can be quantified and specific cells identified using Phase HD images without
the requirement for fluorescence reagents and imaging.




